Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.317
Filter
1.
FEBS Lett ; 596(4): 510-525, 2022 02.
Article in English | MEDLINE | ID: mdl-35043979

ABSTRACT

Lysophosphatidylcholine (LPC), the active metabolite of palmitate, triggers hepatocyte death by activating endoplasmic reticulum stress and JNK signalling-mediated lipoapoptosis. However, LPC-induced cytotoxicity in hepatocytes is not well understood. Here, we found for the first time that LPC-induced cell rounding occurred prior to apoptosis. LPC-induced rounding of cells reduced both cell-extracellular matrix (ECM) adhesion and cell-cell junctions, which promoted detachment-induced apoptosis (defined as anoikis) in hepatocytes. Further study revealed that LPC altered cellular morphology and cell adhesion by inhibiting integrin and cadherin signalling-mediated microfilament polymerization. We also found that ECM supplementation and microfilament cytoskeletal stabilization inhibited LPC-induced hepatocyte death by attenuating anoikis. Our data indicate a novel cytotoxic process and signalling pathway induced by LPC.


Subject(s)
Anoikis/drug effects , Cadherins/genetics , Cell Adhesion/drug effects , Integrins/genetics , Intercellular Junctions/drug effects , Lysophosphatidylcholines/pharmacology , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/ultrastructure , Anoikis/genetics , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cadherins/metabolism , Caspase 8/genetics , Caspase 8/metabolism , Cell Line, Tumor , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/ultrastructure , Gene Expression Regulation , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/ultrastructure , Humans , Integrins/metabolism , Intercellular Junctions/metabolism , Intercellular Junctions/ultrastructure , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction , Vinculin/genetics , Vinculin/metabolism
2.
Nat Commun ; 12(1): 5315, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34493720

ABSTRACT

Human PAK4 is an ubiquitously expressed p21-activated kinase which acts downstream of Cdc42. Since PAK4 is enriched in cell-cell junctions, we probed the local protein environment around the kinase with a view to understanding its location and substrates. We report that U2OS cells expressing PAK4-BirA-GFP identify a subset of 27 PAK4-proximal proteins that are primarily cell-cell junction components. Afadin/AF6 showed the highest relative biotin labelling and links to the nectin family of homophilic junctional proteins. Reciprocally >50% of the PAK4-proximal proteins were identified by Afadin BioID. Co-precipitation experiments failed to identify junctional proteins, emphasizing the advantage of the BioID method. Mechanistically PAK4 depended on Afadin for its junctional localization, which is similar to the situation in Drosophila. A highly ranked PAK4-proximal protein LZTS2 was immuno-localized with Afadin at cell-cell junctions. Though PAK4 and Cdc42 are junctional, BioID analysis did not yield conventional cadherins, indicating their spatial segregation. To identify cellular PAK4 substrates we then assessed rapid changes (12') in phospho-proteome after treatment with two PAK inhibitors. Among the PAK4-proximal junctional proteins seventeen PAK4 sites were identified. We anticipate mammalian group II PAKs are selective for the Afadin/nectin sub-compartment, with a demonstrably distinct localization from tight and cadherin junctions.


Subject(s)
Intercellular Junctions/metabolism , Microfilament Proteins/genetics , Nectins/genetics , Proteomics/methods , cdc42 GTP-Binding Protein/genetics , p21-Activated Kinases/genetics , Biotin/chemistry , Carbon-Nitrogen Ligases/genetics , Carbon-Nitrogen Ligases/metabolism , Cell Line, Tumor , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Intercellular Junctions/genetics , Intercellular Junctions/ultrastructure , Isotope Labeling , Mass Spectrometry , Microfilament Proteins/metabolism , Nectins/metabolism , Osteoblasts/metabolism , Osteoblasts/ultrastructure , Protein Binding , Protein Interaction Mapping , Protein Isoforms/genetics , Protein Isoforms/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction , cdc42 GTP-Binding Protein/metabolism , p21-Activated Kinases/metabolism
3.
J Struct Biol ; 213(4): 107791, 2021 12.
Article in English | MEDLINE | ID: mdl-34520869

ABSTRACT

Cryo-electron tomography is the highest resolution tool available for structural analysis of macromolecular complexes within their native cellular environments. At present, data acquisition suffers from low throughput, in part due to the low probability of positioning a cell such that the subcellular structure of interest is on a region of the electron microscopy (EM) grid that is suitable for imaging. Here, we photo-micropatterned EM grids to optimally position endothelial cells so as to enable high-throughput imaging of cell-cell contacts. Lattice micropatterned grids increased the average distance between intercellular contacts and thicker cell nuclei such that the regions of interest were sufficiently thin for direct imaging. We observed a diverse array of membranous and cytoskeletal structures at intercellular contacts, demonstrating the utility of this technique in enhancing the rate of data acquisition for cellular cryo-electron tomography studies.


Subject(s)
Cell Communication , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Imaging, Three-Dimensional/methods , Intercellular Junctions/ultrastructure , Microscopy, Electron, Transmission/methods , Cadherins/metabolism , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Cells, Cultured , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelial Cells/ultrastructure , Extracellular Matrix/metabolism , Extracellular Matrix/ultrastructure , Humans , Intercellular Junctions/metabolism , Microscopy, Atomic Force/methods , Microscopy, Confocal/methods , Reproducibility of Results
4.
J Cell Biol ; 220(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34251416

ABSTRACT

Epithelial cells lining mucosal surfaces distinctively express the inflammatory bowel disease risk gene INAVA. We previously found that INAVA has dual and competing functions: one at lateral membranes where it affects mucosal barrier function and the other in the cytosol where INAVA enhances IL-1ß signal transduction and protein ubiquitination and forms puncta. We now find that IL-1ß-induced INAVA puncta are biomolecular condensates that rapidly assemble and physiologically resolve. The condensates contain ubiquitin and the E3 ligase ßTrCP2, and their formation correlates with amplified ubiquitination, suggesting function in regulation of cellular proteostasis. Accordingly, a small-molecule screen identified ROS inducers, proteasome inhibitors, and inhibitors of the protein folding chaperone HSP90 as potent agonists for INAVA condensate formation. Notably, inhibitors of the p38α and mTOR pathways enhanced resolution of the condensates, and inhibitors of the Rho-ROCK pathway induced INAVA's competing function by recruiting INAVA to newly assembled intercellular junctions in cells where none existed before.


Subject(s)
Carrier Proteins/genetics , GTPase-Activating Proteins/genetics , Gene Expression Regulation/drug effects , Intercellular Junctions/drug effects , Small Molecule Libraries/pharmacology , beta-Transducin Repeat-Containing Proteins/genetics , Caco-2 Cells , Carrier Proteins/metabolism , Cell Line, Tumor , GTPase-Activating Proteins/metabolism , HEK293 Cells , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , HeLa Cells , Humans , Intercellular Junctions/metabolism , Intercellular Junctions/ultrastructure , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mitogen-Activated Protein Kinase 14/genetics , Mitogen-Activated Protein Kinase 14/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , Proteostasis/drug effects , Proteostasis/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Signal Transduction , Small Molecule Libraries/chemistry , Small Molecule Libraries/classification , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , beta-Transducin Repeat-Containing Proteins/metabolism
5.
Biochem Biophys Res Commun ; 570: 206-213, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34311201

ABSTRACT

Implantation is a highly organized process that involves an interaction between a competent blastocyst and a receptive uterus. Despite significant research efforts, the molecular mechanisms governing this complex process remain elusive. Here, we investigated the effect of dicalcin, an S100-like Ca2+-binding protein, on the attachment of choriocarcinoma cells (BeWo cells) onto a monolayer of endometrial carcinoma cells (Ishikawa cells). Extracellularly administered dicalcin bound to both BeWo and Ishikawa cells. Pretreatment of BeWo spheroids with dicalcin reduced the attachment ratio of the spheroids onto the monolayer, whereas that of Ishikawa cells showed no apparent change. We identified the partial amino acid sequence of human dicalcin that exhibited maximum suppression for BeWo spheroid attachment. Transmission electron microscopy analysis revealed that the dicalcin-derived peptide caused a dilation of the intercellular junction between BeWo and ISK cells. Peptide treatment of BeWo spheroids downregulated the expression of integrinαvß3 in BeWo cells, and induced alterations in their phalloidin-staining pattern, as measured by the length of each F-actin fiber and the thickness of the cortical stress fiber. Thus, dicalcin affects reorganization of the intracellular actin meshwork and subsequently the intensity of attachment, functioning as a novel suppressor of implantation.


Subject(s)
S100 Proteins/metabolism , Trophoblasts/cytology , Trophoblasts/metabolism , Actins/metabolism , Animals , Cell Adhesion , Cell Line , Humans , Integrin alphaVbeta3/metabolism , Intercellular Junctions/metabolism , Intercellular Junctions/ultrastructure , Mice , Spheroids, Cellular/pathology
6.
Dev Biol ; 478: 59-75, 2021 10.
Article in English | MEDLINE | ID: mdl-34029538

ABSTRACT

Morphogenesis of the vertebrate neural tube occurs by elongation and bending of the neural plate, tissue shape changes that are driven at the cellular level by polarized cell intercalation and cell shape changes, notably apical constriction and cell wedging. Coordinated cell intercalation, apical constriction, and wedging undoubtedly require complex underlying cytoskeletal dynamics and remodeling of adhesions. Mutations of the gene encoding Scribble result in neural tube defects in mice, however the cellular and molecular mechanisms by which Scrib regulates neural cell behavior remain unknown. Analysis of Scribble mutants revealed defects in neural tissue shape changes, and live cell imaging of mouse embryos showed that the Scrib mutation results in defects in polarized cell intercalation, particularly in rosette resolution, and failure of both cell apical constriction and cell wedging. Scrib mutant embryos displayed aberrant expression of the junctional proteins ZO-1, Par3, Par6, E- and N-cadherins, and the cytoskeletal proteins actin and myosin. These findings show that Scribble has a central role in organizing the molecular complexes regulating the morphomechanical neural cell behaviors underlying vertebrate neurulation, and they advance our understanding of the molecular mechanisms involved in mammalian neural tube closure.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Neural Tube Defects/embryology , Neural Tube/embryology , Animals , Cell Polarity , Cell Shape , Cytoskeletal Proteins , Gene Expression , Intercellular Junctions/metabolism , Intercellular Junctions/ultrastructure , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Morphogenesis , Mutation , Nerve Tissue Proteins/genetics , Neural Plate/cytology , Neural Plate/embryology , Neural Tube/cytology , Neural Tube Defects/genetics , Neuroepithelial Cells/cytology , Neuroepithelial Cells/metabolism , Neuroepithelial Cells/ultrastructure , Tight Junction Proteins/genetics , Tight Junction Proteins/metabolism
7.
J Am Soc Nephrol ; 32(6): 1409-1424, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33795424

ABSTRACT

BACKGROUND: Podocyte slit diaphragms (SDs) are intercellular junctions that function as size-selective filters, excluding most proteins from urine. Abnormalities in SDs cause proteinuria and nephrotic syndrome. Podocytes exhibit apicobasal polarity, which can affect fundamental aspects of cell biology, including morphology, intercellular junction formation, and asymmetric protein distribution along the plasma membrane. Apical polarity protein mutations cause nephrotic syndrome, and data suggest apical polarity proteins regulate SD formation. However, there is no evidence that basolateral polarity proteins regulate SDs. Thus, the role of apicobasal polarity in podocytes remains unclear. METHODS: Genetic manipulations and transgenic reporters determined the effects of disrupting apicobasal polarity proteins in Drosophila nephrocytes, which have SDs similar to those of mammalian podocytes. Confocal and electron microscopy were used to characterize SD integrity after loss of basolateral polarity proteins, and genetic-interaction studies illuminated relationships among apicobasal polarity proteins. RESULTS: The study identified four novel regulators of nephrocyte SDs: Dlg, Lgl, Scrib, and Par-1. These proteins comprise the basolateral polarity module and its effector kinase. The data suggest these proteins work together, with apical polarity proteins, to regulate SDs by promoting normal endocytosis and trafficking of SD proteins. CONCLUSIONS: Given the recognized importance of apical polarity proteins and SD protein trafficking in podocytopathies, the findings connecting basolateral polarity proteins to these processes significantly advance our understanding of SD regulation.


Subject(s)
Cell Membrane/physiology , Cell Polarity , Drosophila/cytology , Intercellular Junctions , Membrane Proteins/metabolism , Podocytes/physiology , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Endocytosis , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Intercellular Junctions/ultrastructure , Membrane Proteins/genetics , Microscopy, Confocal , Microscopy, Electron , Models, Biological , Podocytes/metabolism , Protein Transport , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Vertebrates
8.
Sci Rep ; 11(1): 6664, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33758229

ABSTRACT

FLO-1 cell line represents an important tool in esophageal adenocarcinoma (EAC) research as a verified and authentic cell line to study the disease pathophysiology and antitumor drug screenings. Since in vitro characteristics of cells depend on the microenvironment and culturing conditions, we performed a thorough characterization of the FLO-1 cell line under different culturing conditions with the aim of (1) examining the effect of serum-free growth medium and air-liquid interface (A-L) culturing, which better reflect physiological conditions in vivo and (2) investigating the differentiation potential of FLO-1 cells to mimic the properties of the in vivo esophageal epithelium. Our study shows that the composition of the media influenced the morphological, ultrastructural and molecular characteristics of FLO-1 cells, such as the expression of junctional proteins. Importantly, FLO-1 cells formed spheres at the A-L interface, recapitulating key elements of tumors in the esophageal tube, i.e., direct contact with the gas phase and three-dimensional architecture. On the other hand, FLO-1 models exhibited high permeability to model drugs and zero permeability markers, and low transepithelial resistance, and therefore poorly mimicked normal esophageal epithelium. In conclusion, the identified effect of culture conditions on the characteristics of FLO-1 cells should be considered for standardization, data reproducibility and validity of the in vitro EAC model. Moreover, the sphere-forming ability of FLO-1 cells at the A-L interface should be considered in EAC tumor biology and anticancer drug studies as a reliable and straightforward model with the potential to increase the predictive efficiency of the current in vitro approaches.


Subject(s)
Adenocarcinoma/ultrastructure , Antineoplastic Agents/pharmacology , Cell Culture Techniques , Drug Screening Assays, Antitumor/methods , Drug Screening Assays, Antitumor/standards , Esophageal Neoplasms/ultrastructure , Adenocarcinoma/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Culture Media , Drug Discovery/methods , Esophageal Neoplasms/pathology , Humans , Immunohistochemistry , Intercellular Junctions/ultrastructure
9.
Int J Mol Sci ; 22(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33669068

ABSTRACT

Tunneling nanotubes (TNTs) are recognized long membrane nanotubes connecting distance cells. In the last decade, growing evidence has shown that these subcellular structures mediate the specific transfer of cellular materials, pathogens, and electrical signals between cells. As intercellular bridges, they play a unique role in embryonic development, collective cell migration, injured cell recovery, cancer treatment resistance, and pathogen propagation. Although TNTs have been considered as potential drug targets for treatment, there is still a long way to go to translate the research findings into clinical practice. Herein, we emphasize the heterogeneous nature of TNTs by systemically summarizing the current knowledge on their morphology, structure, and biogenesis in different types of cells. Furthermore, we address the communication efficiency and biological outcomes of TNT-dependent transport related to diseases. Finally, we discuss the opportunities and challenges of TNTs as an exciting therapeutic approach by focusing on the development of efficient and safe drugs targeting TNTs.


Subject(s)
Cell Communication/drug effects , Drug Development/methods , Intercellular Junctions/metabolism , Neoplasms/metabolism , Animals , Biological Transport, Active/drug effects , Biological Transport, Active/genetics , Biological Transport, Active/physiology , Cell Communication/genetics , Humans , Infections/drug therapy , Infections/metabolism , Intercellular Junctions/drug effects , Intercellular Junctions/pathology , Intercellular Junctions/ultrastructure , Neoplasms/drug therapy , Neoplasms/pathology , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism
10.
Cell Microbiol ; 23(3): e13283, 2021 03.
Article in English | MEDLINE | ID: mdl-33108050

ABSTRACT

Toxoplasma gondii shows high dissemination and migration properties across biological barriers infecting immunologically privileged organs. Toxoplasma uses different routes for dissemination; however, the mechanisms are not fully understood. Herein, we studied the effects of proteases present in excretion/secretion products (ESPs) of Toxoplasma on MDCK cell monolayers. Ultrastructural analysis showed that ESPs of Toxoplasma disrupt the intercellular junctions (IJ) of adjacent cells. The tight junction (TJ) proteins ZO-1, occludin, and claudin-1 suffered a progressive decrease in protein levels upon ESPs treatment. In addition, ESPs induced mislocalization of such TJ proteins, along with the adherent junction protein E-cadherin, and this was prevented by pre-treating the ESPs with protease inhibitors. Reorganisation of cytoskeleton proteins was also observed. Endocytosis inhibitors, Dyngo®-4a and Dynasore, impeded the modifications, suggesting that TJ proteins internalisation is triggered by the ESPs proteases hence contributing to the loss of IJ. The observed disruption in TJ proteins went in line with a decrease in the transepithelial electrical resistance of the monolayers, which was significantly blocked by pre-treating ESPs with metalloprotease and serine protease inhibitors. Moreover, exposure of cell monolayers to ESPs facilitated paracellular migration of tachyzoites. Our results demonstrate that Toxoplasma ESPs contain proteases that can disrupt the IJ of epithelial monolayers and this could facilitate the paracellular route for Toxoplasma tissue dissemination and migration.


Subject(s)
Intercellular Junctions/metabolism , Peptide Hydrolases/metabolism , Protozoan Proteins/metabolism , Tight Junction Proteins/metabolism , Toxoplasma/physiology , Animals , Cadherins/metabolism , Claudin-1/metabolism , Cytoskeletal Proteins/metabolism , Dogs , Epithelial Cells/metabolism , Epithelial Cells/parasitology , Hydrazones/pharmacology , Intercellular Junctions/ultrastructure , Madin Darby Canine Kidney Cells , Metalloproteases/metabolism , Movement , Naphthols/pharmacology , Occludin/metabolism , Toxoplasma/enzymology , Toxoplasma/pathogenicity , Zonula Occludens-1 Protein/metabolism
11.
Neurogastroenterol Motil ; 33(3): e13993, 2021 03.
Article in English | MEDLINE | ID: mdl-33020982

ABSTRACT

BACKGROUND AND AIM: Muscularis macrophages (MMs) not only mediate the innate immunity, but also functionally interact with cells important for gastrointestinal motility. The aim of this study was to determine the spatial relationship and types of contacts between the MMs and neighboring cells in the muscularis propria of human and mouse stomach, small intestine, and large intestine. METHODS: The distribution and morphology of MMs and their contacts with other cells were investigated by immunohistochemistry and transmission electron microscopy. KEY RESULTS: Immunohistochemistry showed variable shape and number of MMs according to their location in different portions of the muscle coat. By double labeling, a close association between MMs and neighboring cells, that is, neurons, smooth muscle cells, interstitial cells of Cajal (ICCs), telocytes (TCs)/PDGFRα-positive cells, was seen. Electron microscopy demonstrated that in the muscle layers of both animal species, MMs have similar ultrastructural features and have specialized cell-to-cell contacts with smooth muscle cells and TCs/PDGFRα-positive cells but not with ICCs and enteric neurons. CONCLUSION & INFERENCES: This study describes varying patterns of distribution of MMs between different regions of the gut, and reports the presence of distinct and extended cell-to-cell contacts between MMs and smooth muscle cells and between MMs and TCs/PDGFRα-positive cells. In contrast, MMs, although close to ICCs and nerve elements, did not make contact with them. These findings indicate specialized and variable roles for MMs in the modulation of gastrointestinal motility whose significance should be more closely investigated in normal and pathological conditions.


Subject(s)
Gastric Mucosa/cytology , Intercellular Junctions/ultrastructure , Intestinal Mucosa/cytology , Macrophages/cytology , Myocytes, Smooth Muscle/cytology , Telocytes/cytology , Animals , Cell Communication , Enteric Nervous System , Female , Gastric Mucosa/metabolism , Gastric Mucosa/ultrastructure , Humans , Interstitial Cells of Cajal/cytology , Interstitial Cells of Cajal/metabolism , Interstitial Cells of Cajal/ultrastructure , Intestinal Mucosa/metabolism , Intestinal Mucosa/ultrastructure , Macrophages/metabolism , Macrophages/ultrastructure , Male , Mice , Microscopy, Electron, Transmission , Middle Aged , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/ultrastructure , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Telocytes/metabolism , Telocytes/ultrastructure
12.
Biomolecules ; 10(12)2020 12 10.
Article in English | MEDLINE | ID: mdl-33321985

ABSTRACT

Barrier function is a vital homeostatic mechanism employed by epithelial and endothelial tissue. Diseases across a wide range of tissue types involve dynamic changes in transcellular junctional complexes and the actin cytoskeleton in the regulation of substance exchange across tissue compartments. In this review, we focus on the contribution of the gap junction protein, Cx43, to the biophysical and biochemical regulation of barrier function. First, we introduce the structure and canonical channel-dependent functions of Cx43. Second, we define barrier function and examine the key molecular structures fundamental to its regulation. Third, we survey the literature on the channel-dependent roles of connexins in barrier function, with an emphasis on the role of Cx43 and the actin cytoskeleton. Lastly, we discuss findings on the channel-independent roles of Cx43 in its associations with the actin cytoskeleton and focal adhesion structures highlighted by PI3K signaling, in the potential modulation of cellular barriers. Mounting evidence of crosstalk between connexins, the cytoskeleton, focal adhesion complexes, and junctional structures has led to a growing appreciation of how barrier-modulating mechanisms may work together to effect solute and cellular flux across tissue boundaries. This new understanding could translate into improved therapeutic outcomes in the treatment of barrier-associated diseases.


Subject(s)
Actin Cytoskeleton/metabolism , Connexin 43/metabolism , Coronary Artery Disease/metabolism , Inflammatory Bowel Diseases/metabolism , Multiple Sclerosis/metabolism , Respiratory Distress Syndrome/metabolism , Stroke/metabolism , Actin Cytoskeleton/ultrastructure , Animals , Biological Transport , Connexin 43/genetics , Coronary Artery Disease/genetics , Coronary Artery Disease/pathology , Epithelial Cells/metabolism , Epithelial Cells/ultrastructure , Focal Adhesions/metabolism , Focal Adhesions/ultrastructure , Gene Expression Regulation , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Intercellular Junctions/metabolism , Intercellular Junctions/ultrastructure , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Respiratory Distress Syndrome/genetics , Respiratory Distress Syndrome/pathology , Signal Transduction , Stroke/genetics , Stroke/pathology , Zonula Occludens-1 Protein/genetics , Zonula Occludens-1 Protein/metabolism
13.
Front Immunol ; 11: 2101, 2020.
Article in English | MEDLINE | ID: mdl-32983166

ABSTRACT

Background and Purpose: The mechanism underlying the pathology of neuromyelitis optica spectrum disorders (NMOSD) remains unclear even though antibodies to the water channel protein aquaporin-4 (AQP4) on astrocytes play important roles. Our previous study showed that dysbiosis occurred in the fecal microbiota of NMOSD patients. In this study, we further investigated whether the intestinal barrier and mucosal flora balance are also interrupted in NMOSD patients. Methods: Sigmoid mucosal biopsies were collected by endoscopy from six patients with NMOSD and compared with samples from five healthy control (HC) individuals. These samples were processed for electron microscopy and immunohistochemistry to investigate changes in ultrastructure and in the number and size of intestinal inflammatory cells. Changes in mucosal flora were also analyzed by high-throughput 16S ribosomal RNA gene amplicon sequencing. Results: The results from bacterial rRNA gene sequencing showed that bacterial diversity was decreased, but Streptococcus and Granulicatella were abundant in the colonic mucosa specimens of NMOSD patients compared to the HC individuals. The intercellular space between epithelia of the colonic mucosa was wider in NMOSD patients compared to the HC subjects (p < 0.01), and the expression of tight junction proteins [occludin, claudin-1 and zonula occludens-1 (ZO-1)] in NMOSD patients significantly decreased compared to that in the HC subjects. We also found numerous activated macrophages with many inclusions within the cytoplasm, mast cells with many particles in their cytoplasm, and enlarged plasma cells with rich developed rough endoplasmic reticulum in the lamina propria of the mucosa of the patients with NMOSD. Quantitative analysis showed that the percentages of small CD38+ and CD138+ cells (plasma cells) were lower, but the percentage of larger plasma cells was higher in NMOSD patients. Conclusion: The present study demonstrated that the intestinal barrier was disrupted in the patients with NMOSD, accompanied by dysbiosis and inflammatory activation of the gut. The mucosal microbiota imbalance and inflammatory responses might allow pathogens to cross the damaged intestinal barrier and participate in pathological process in NMOSD. However, further study on the pathological mechanism of NMOSD underlying gut dysbiosis is warranted in the future.


Subject(s)
Dysbiosis/microbiology , Gastrointestinal Microbiome , Intestinal Mucosa/metabolism , Neuromyelitis Optica/microbiology , Adult , Bacteria/isolation & purification , Colon, Sigmoid/microbiology , Colon, Sigmoid/pathology , Dysbiosis/immunology , Feces/microbiology , Female , Humans , Inflammation , Intercellular Junctions/ultrastructure , Intestinal Mucosa/microbiology , Intestinal Mucosa/ultrastructure , Male , Microscopy, Electron, Transmission , Middle Aged , Neuromyelitis Optica/immunology , Plasma Cells/pathology , Ribotyping , Young Adult
14.
Sci Rep ; 10(1): 14437, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32879377

ABSTRACT

The ability to identify specific cell-cell contact in the highly heterogeneous mammalian body is crucial to revealing precise control of the body plan and correct function. To visualize local connections, we previously developed a genetically encoded fluorescent indicator, GRAPHIC, which labels cell-cell contacts by restricting the reconstituted green fluorescent protein (GFP) signal to the contact site. Here, we modify GRAPHIC to give the reconstituted GFP motility within the membrane, to detect cells that make contact with other specific cells. Removal of leucine zipper domains, located between the split GFP fragment and glycophosphatidylinositol anchor domain, allowed GFP reconstituted at the contact site to diffuse throughout the entire plasma membrane, revealing cell morphology. Further, depending on the structural spacers employed, the reconstituted GFP could be selectively targeted to N terminal (NT)- or C terminal (CT)-probe-expressing cells. Using these novel constructs, we demonstrated that we can specifically label NT-probe-expressing cells that made contact with CT-probe-expressing cells in an epithelial cell culture and in Xenopus 8-cell-stage blastomeres. Moreover, we showed that diffusible GRAPHIC (dGRAPHIC) can be used in neuronal circuits to trace neurons that make contact to reveal a connection map. Finally, application in the developing brain demonstrated that the dGRAPHIC signal remained on neurons that had transient contacts during circuit development to reveal the contact history. Altogether, dGRAPHIC is a unique probe that can visualize cells that made specific cell-cell contact.


Subject(s)
GPI-Linked Proteins/metabolism , Intercellular Junctions/ultrastructure , Protein Engineering/methods , Animals , Blastomeres/cytology , Cells, Cultured , GPI-Linked Proteins/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Leucine Zippers , Mice , Mice, Inbred ICR , Microscopy, Fluorescence/methods , Neurons/cytology , Rats , Rats, Sprague-Dawley , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Swine , Xenopus
15.
Cell Mol Life Sci ; 77(21): 4397-4411, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31912195

ABSTRACT

The isotype-specific composition of the keratin cytoskeleton is important for strong adhesion, force resilience, and barrier function of the epidermis. However, the mechanisms by which keratins regulate these functions are still incompletely understood. In this study, the role and significance of the keratin network for mechanical integrity, force transmission, and barrier formation were analyzed in murine keratinocytes. Following the time-course of single-cell wound closure, wild-type (WT) cells slowly closed the gap in a collective fashion involving tightly connected neighboring cells. In contrast, the mechanical response of neighboring cells was compromised in keratin-deficient cells, causing an increased wound area initially and an inefficient overall wound closure. Furthermore, the loss of the keratin network led to impaired, fragmented cell-cell junctions, and triggered a profound change in the overall cellular actomyosin architecture. Electric cell-substrate impedance sensing of cell junctions revealed a dysfunctional barrier in knockout (Kty-/-) cells compared to WT cells. These findings demonstrate that Kty-/- cells display a novel phenotype characterized by loss of mechanocoupling and failure to form a functional barrier. Re-expression of K5/K14 rescued the barrier defect to a significant extent and reestablished the mechanocoupling with remaining discrepancies likely due to the low abundance of keratins in that setting. Our study reveals the major role of the keratin network for mechanical homeostasis and barrier functionality in keratinocyte layers.


Subject(s)
Keratinocytes/cytology , Keratins/metabolism , Animals , Biomechanical Phenomena , Cell Line , Epidermis/metabolism , Epidermis/ultrastructure , Gene Deletion , Intercellular Junctions/genetics , Intercellular Junctions/metabolism , Intercellular Junctions/ultrastructure , Keratinocytes/metabolism , Keratins/genetics , Keratins/ultrastructure , Mice , Wound Healing
16.
J Microsc ; 279(3): 189-196, 2020 09.
Article in English | MEDLINE | ID: mdl-31828778

ABSTRACT

The intercalated disc is an important structure in cardiomyocytes, as it is essential to maintain correct contraction and proper functioning of the heart. Adhesion and communication between cardiomyocytes are mediated by three main types of intercellular junctions, all residing in the intercalated disc: gap junctions, desmosomes and the areae compositae. Mutations in genes that encode junctional proteins, including αT-catenin (encoded by CTNNA3), have been linked to arrhythmogenic cardiomyopathy and sudden cardiac death. In mice, the loss of αT-catenin in cardiomyocytes leads to impaired heart function, fibrosis, changed expression of desmosomal proteins and increased risk for arrhythmias following ischemia-reperfusion. Currently, it is unclear how the intercalated disc and the intercellular junctions are organised in 3D in the hearts of this αT-catenin knockout (KO) mouse model. In order to scrutinise this, ventricular cardiac tissue of αT-catenin KO mice was used for volume electron microscopy (VEM), making use of Focused Ion Beam Scanning Electron Microscopy (FIB-SEM), allowing a careful 3D reconstruction of the intercalated disc, including gap junctions and desmosomes. Although αT-catenin KO and control mice display a comparable organisation of the sarcomere and the different intercalated disc regions, the folds of the plicae region of the intercalated disc are longer and more narrow in the KO heart, and the pale region between the sarcomere and the intercalated disc is larger. In addition, αT-catenin KO intercalated discs appear to have smaller gap junctions and desmosomes in the plicae region, while gap junctions are larger in the interplicae region of the intercalated disc. Although the reason for this remodelling of the ultrastructure after αT-catenin deletion remains unclear, the excellent resolution of the FIB-SEM technology allows us to reconstruct details that were not reported before. LAY DESCRIPTION: Cardiomyocytes are cells that make up the heart muscle. As the chief cell type of the heart, cardiomyocytes are primarily involved in the contractile function of the heart that enables the pumping of blood around the body. Cardiac muscle cells are connected to each other at their short end by numerous intercellular junctions forming together a structure called the intercalated disc. These intercellular junctions comprise specific protein complexes, which are crucial for both intercellular adhesion and correct contraction of the heart. Imaging by conventional electron microscopy (EM) revealed a heavily folded intercalated disc with apparently random organization of the intercellular junctions. However, this conclusion was based on analysis in two dimensions (2D). 3D information of these structures is needed to unravel their true organization and function. In the present study, we used a more contemporary technique, called volume EM, to image and reconstruct the intercalated discs in 3D. By this approach, EM images are made from a whole block of tissue what differs significantly from classical EM methods that uses only one very thin slice for imaging. Further, we analyzed in comparison to normal mice also a mouse model for cardiomyopathy in which a specific protein of the cardiac intercellular junctions, αT-catenin, is absent. Volume EM revealed that in the hearts of these mice with cardiomyopathy, the finger-like folds of the intercalated disc are longer and thinner compared to control hearts. Also the intercellular junctions on the folded parts of the intercalated disc are smaller and their connection to the striated cytoskeleton seems further away. In conclusion, our volume EM study has expanded our understanding of 3D structures at the intercalated discs and will pave the way for more detailed models of disturbed cell-cell contacts associated with heart failure.


Subject(s)
Desmosomes/ultrastructure , Gap Junctions/ultrastructure , Myocardium/ultrastructure , Myocytes, Cardiac/ultrastructure , alpha Catenin/genetics , Animals , Imaging, Three-Dimensional , Intercellular Junctions/ultrastructure , Mice , Mice, Knockout , Microscopy, Electron , Mutation
17.
Cell Tissue Res ; 379(1): 75-92, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31713729

ABSTRACT

In the molecular biological and ultrastructural studies of the peritubular wall cells encasing the seminiferous tubules of mammalian testes, we found it necessary to characterize the outermost cell layer bordering on the interstitial space in detail. For half a century, the extremely thin cells of this monolayer have in the literature been regarded as part of a lymphatic endothelium, in particular in rodents. However, our double-label immunofluorescence microscopical results have shown that in all six mammalian species examined, including three rodent ones (rat, mouse, guinea pig), this classification is not correct: the very attenuated cells of this monolayer are not of lymphatic endothelial nature as they do not contain established endothelial marker molecules. In particular, they do not contain claudin-5-positive tight junctions, VE-cadherin-positive adherens junctions, "lymph vessel endothelium hyaluronan receptor 1" (LYVE-1), podoplanin, protein myozap and "von Willebrand Factor" (vWF). By contrast and as controls, all these established marker molecules for the lymphatic endothelial cell type are found in the endothelia of the lymph and-partly also-blood vessels located nearby in the interstitial space. Thus, our results provide evidence that the monolayer cells covering the peritubular wall do not contain endothelial marker molecules and hence are not endothelial cells. We discuss possible methodological reasons for the maintenance of this incorrect cell type classification in the literature and emphasize the value of molecular analyses using multiple cell type-specific markers, also with respect to physiology and medical sciences.


Subject(s)
Endothelial Cells , Intercellular Junctions , Seminiferous Tubules/ultrastructure , Testis/anatomy & histology , Animals , Biomarkers/analysis , Endothelial Cells/cytology , Humans , Immunohistochemistry , Intercellular Junctions/ultrastructure , Male , Mammals/anatomy & histology , Testis/ultrastructure
18.
Physiol Int ; 106(3): 225-235, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31560236

ABSTRACT

OBJECTIVES: Impaired intestinal barrier function has been demonstrated in the pathophysiology of diarrhea-predominant irritable bowel syndrome (IBS-D). This study aimed to describe the intestinal ultrastructural findings in the intestinal mucosal layer of IBS-D patients. METHODS: In total, 10 healthy controls and 10 IBS-D patients were analyzed in this study. The mucosa of each patient's rectosigmoid colon was first assessed by confocal laser endomicroscopy (CLE); next, biopsied specimens of these sites were obtained. Intestinal tissues of IBS-D patients and healthy volunteers were examined to observe cellular changes by transmission electron microscopy (TEM). RESULTS: CLE showed no visible epithelial damage or inflammatory changes in the colonic mucosa of IBS-D compared with healthy volunteers. On transmission electron microscopic examination, patients with IBS-D displayed a larger apical intercellular distance with a higher proportion of dilated (>20 nm) intercellular junctional complexes, which was indicative of impaired mucosal integrity. In addition, microvillus exfoliation, extracellular vesicle as well as increased presence of multivesicular bodies were visible in IBS-D patients. Single epithelial cells appeared necrotic, as characterized by cytoplasmic vacuolization, cytoplasmic swelling, and presence of autolysosome. A significant association between bowel habit, frequency of abdominal pain, and enlarged intercellular distance was found. CONCLUSION: This study showed ultrastructural alterations in the architecture of intestinal epithelial cells and intercellular junctional complexes in IBS-D patients, potentially representing a pathophysiological mechanism in IBS-D.


Subject(s)
Diarrhea/pathology , Intestinal Mucosa/ultrastructure , Irritable Bowel Syndrome/pathology , Abdominal Pain/pathology , Colon, Sigmoid/ultrastructure , Cytoplasm/pathology , Cytoplasm/ultrastructure , Epithelial Cells/pathology , Epithelial Cells/ultrastructure , Female , Humans , Intercellular Junctions/ultrastructure , Male , Middle Aged , Rectum/pathology , Rectum/ultrastructure
19.
Arthropod Struct Dev ; 50: 78-93, 2019 May.
Article in English | MEDLINE | ID: mdl-31022533

ABSTRACT

Differentiation of transporting epithelial cells during development of animal organisms includes remodelling of apical and basal plasma membranes to increase the available surface for transport and formation of occluding junctions, which maintain a paracellular diffusion barrier. This study provides a detailed ultrastructural analysis of apical and basal plasma membrane remodelling and cell junction formation in hindgut cells during late embryonic and early postembryonic development of the crustacean Porcellio scaber. Hindgut cells in late-stage embryos are columnar with flat apical and basal plasma membranes. In early-stage marsupial mancae the hindgut cells begin to acquire their characteristic dome shape, the first apical membrane folding is evident and the septate junctions expand considerably, all changes being probably associated with the onset of active feeding. In postmarsupial mancae the apical labyrinth is further elaborated and the septate junctions are expanded. This coincides with the transition to an external environment and food sources. First basal infoldings appear in the anterior chamber of early-stage marsupial mancae, but in the papillate region they are mostly formed in postmarsupial mancae. In molting late-stage marsupial mancae, the plasma membrane acquires a topology characteristic of cuticle-producing arthropod epithelia and the septate junctions are considerably reduced.


Subject(s)
Isopoda/growth & development , Isopoda/ultrastructure , Animals , Cell Differentiation , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Digestive System/growth & development , Digestive System/ultrastructure , Epithelial Cells/metabolism , Epithelial Cells/ultrastructure , Intercellular Junctions/metabolism , Intercellular Junctions/ultrastructure , Microscopy, Electron, Transmission
20.
Invest Ophthalmol Vis Sci ; 60(5): 1630-1643, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30995299

ABSTRACT

Purpose: We investigated whether cellular connectivity between Schlemm's canal (SC) inner wall (IW) endothelium, and juxtacanalicular connective tissue (JCT), and between IW endothelial cells, plays a role in giant vacuole (GV) and pore formation by comparing perfusion- and immersion-fixed eyes. Methods: Normal human donor eyes (n = 4) were either immersion-fixed (0 mm Hg) or perfusion-fixed (15 mm Hg). Trabecular meshwork near SC was imaged using serial block-face scanning electron microscopy. A total of 12 IW cells from each group were 3D-reconstructed from ∼7040 electron micrographs and compared. In each cell, connections between IW cells and JCT cells/matrix were quantified; IW/IW connectivity was measured by cell border overlap length. GV volume, density, shape, and intracellular and paracellular pores were analyzed. Results: The mean number of IW/JCT cell-cell connections per cell significantly decreased (P < 0.01) while the summed GV volume per cell significantly increased (P < 0.01) in perfusion-fixed eyes compared to immersion-fixed eyes. Intracellular pores were observed in 14.6% of GVs in perfusion-fixed eyes and not observed in immersion-fixed eyes. The mean IW/IW overlap length per cell decreased (P < 0.01), and paracellular pores were found only in regions where IW/IW connectivity was minimal (overlap length = 0 µm) in perfusion-fixed eyes and not observed in immersion-fixed eyes. Conclusions: Our data suggest that changes in IW/JCT connectivity may be an important factor in the formation of larger GVs, and decreased IW/IW connectivity may promote paracellular pore formation. Targeting the IW/JCT and IW/IW connectivity may therefore be a potential strategy to regulate outflow resistance and IOP. .


Subject(s)
Cell Communication/physiology , Endothelium/ultrastructure , Intercellular Junctions/ultrastructure , Limbus Corneae/ultrastructure , Trabecular Meshwork/ultrastructure , Vacuoles/physiology , Adult , Aged , Connective Tissue/ultrastructure , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Microscopy, Electron, Scanning , Tissue Donors , Tissue Fixation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...